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LE'ITER TO THE EDITOR 

New solutions of the Yang-Baxter equation without additivity, 
and its coloured interpretation 

Mo-Lin G e t  and Kang X u e t t  
t Theoretical Physics Division, Nankai Institute of Mathematics. Tianjin 300071. People's 
Republic of China 
i Department of Physics, North-East Normal University. Changchun 130024, People's 
Rewblie of China 

Received 12 April 1991 

Abstract. General forms of 4 x 4  solutions of the Yang-Baxter equation, without the 
additivity of spectral parameters, are obtained. By making a parametrization of the colours 
in terms of the spectral parameters we shed new light on the coloured solution of the 
Yaw-Baxter equation. 

The (4x 4)-dimensional solutions of the braid relation 

s12s23s12 = s 2 3 s 1 2 s 2 1  (1) 

are well known. Direct calculation shows that it admits two types of solutions: standard 
[l-41 and exotic [ 5 , 6 ] .  The former is related to SU,(2) and the latter to SU,(1, 1) [7] 
or the quantum algebra given in [8]. To generate the solutions of the Yang-Baxter 
equation (YBE)  

R , , ( X ) R , , ( X Y ) d , , ( Y )  = R , , ( Y ) R , , ( X Y ) R , , ( X )  (2)  

R ( x )  = xs-x-'s-' (3)  

)qx)l;" = Q"'+"'" S:;" (4) 

where x and y are spectral parameters, two methods were proposed: either using [9] 

or  [ 101 

where Q and a are arbitrary constants and x = exp(uj. It is known that (4) is a special 
case of the 'symmetry-breaking transformation' discussed in [Z, 10, 111 and this spectral- 
parameter 'dressing' process does not change the elements with a = b = c = d (a, b, c 
and d = + or - j for spin-f models. 

For a long time it seemed that the standard and exotic solutions 
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have exhausted the 4 x 4  solutions of (1) except that the external field can be applied 
to change the 1's to be '1 and q-' 1121. However, recently Murakami [ I31  has found 
the coloured solution of ( I )  

where A and p stand for the colours and 1,. 1,. the coloured parameters. In order to 
obtain a solution of (2). equation (3) is used in [13]. As usual for a given solution of 
( I )  a Yang-Baxterization prescription has been developed to generate solution of (2) 
191 without colours. 

Observing (6) if we regarded SA' as functions of continuous variables A and p, 
nameiy s"" = S(A, p) ,  then A ana  p are piacea as 'spectrai parameters'. we  can ask 
a question: can we find a general form of solution of 

(7) 

which takes (5) and (6) as special cases? The answer is yes. In this letter we show that 
the concept of connection between colours and the spectral parameters in the sense 
o i an  extension oftype (4) can be set up and can heip to hnd a generai form ofsoiution 
of (7). 

R ( A , w ) =  1 ~ , ( ~ , P L ) E . . @ E , , +  W ( A , p ) E - - @ E + +  

R d A .  p ) R 2 3 ( h ,  v ) R d p ,  U )  = R 2 h .  v ) R d A ,  u ) & d A ,  p )  

In order to solve (7) we first write the weight-conserved general form 

U=+. -  

+ 1 p"b'@, $)&,@Eh" ( 8 )  
n + h  

a.h=+, 

where (Eah)rd  = S.,Shd, a, b, c, d = +, - and u,(A, p) .  W(A, p )  and p'"."(A, p )  will 
be determined by (7). 

Substituting (8) into (7) we obtain the relations 
1 0 1  
12, 

.. I ,  . . \ - ' - . + ' I , ,  ..\-"I-.+',, ..,.. I ,  ..\ 
U-\", P I P  I". " I - P  I", C L I - - \ ' L ,  " I  

L ( A ,  ~ ) p ' + ' - ! ( p ,  v) =p'+'- ' (A, 72)u-(p, v )  

U+(& p)p'+.-'( A, U )  = p'+.-' (A,  r )u+(A,  U )  

u+(A,  v)p'- '+'(p,  v )=p ' - '+ ' (A ,  v)u+(p,  U )  

(10) 

(11) 

(12) 

( i 3 )  l - + , , .  I t - ) ,  \ l  ..,/, 
{u+(A, p)u+(p, v j - p  ' ' ( A ,  p ) p .  . (p,  v j f  W ( A ,  U )  = U+(& U ) ( &  p)F'(p,  i.) 

(U-(& v ) ) - ' {u - (A ,  pLL)U-(p, U) - p ' - ' + ! ( ~ ,  u)P'+'- ' (A,  p )  

=(u+IA, u ) ) - " L ~ + ( A ,  P ) U + ( P ,  ~ ) - P ' + ' - ' ( P ,  u ) P ' - ' + ' ( L  1)). (14) 

Let us consider variable-separation solutions of (9)-(14). Suppose 
p )  = ~ ~ ~ ~ ~ - , ! ~ , ! ~ ! ~ ~ ~ ~ ~ ~ ~ ! ~ ~ !  (a, b =  +, - j  

(15)  
p l a . b l ( ~ ,  ,+) = h ( a ,  b ) Q ~ ~ ~ , ~ r , I ~ . b l * ' + ~ r ~ ~ ~ . h l ~ * t  ( a # b )  ( a = + , - )  

where f., h(a, b), a r ( a ) ,  p x ( a ) ,  y k ( a )  and u k ( a ,  b )  are to be determined as the 
consequence of (9)-(15). The parameter Q is arbitrary. 



which allows two types of solutions: 

( i )  f+ =f- at(+) - % - )  = f i x ( - )  - f i x ( + )  
(ii) f + f -  = + h (+, -) h (-, +). 

Since the YBE allows an  overall factor one can take 

h ( + ,  -)= 7 h ( - , + ) =  7-l. 

in terms of the matrix form, equation (8) ieads to 
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and 

W(A, P )  = %(A,  F )  W ( A ,  P )  (29) 

(30) *(A, p )  W ( p ,  U) = (4 - 9-l) W ( A ,  P ) .  

A simple choice is 

*(A, LL) = (9 - C')(g(A)/dp)) (31) 

with g(A) and g ( p )  being arbitrary functions of A and p. We emphasize that by virtue 
of (30) equation (27) provides a non-additivity solution of (7) where the spectral- 
parameter dressing process for a solution of (1) is an extension of type (4) rather than 
type (3). I n  other words the spectral parameters in (27) appear in separate elements 
and are placed as the colours. Under such an  understanding (27) can be further 
rang-Baxierized by using (3) io generaie a coioured x-soiuiion of (2).  it seems that 
for a solution ,of the braid relation we can Yang-Baxterize it twice. The first is by 
direct computation (8) and without additivity, like (7). The second process is in the 
usual sense by using (3) with the additivity obeying (2). In order to understand the 
statement let us consider some particular cases. 

When A = p = 0, equation (27) is reduced to  

., 

where u;(0, 0) = !?L(0,0) = qj p'+.-'(n9 0) = 7, p'- .+'(O,  0) = and W(0,O) = q - q - ' ~  
Equation (32) is exactly the standard solution with an external field. It has been 
discussed in [ 121. 

When W(A, p )  are dependent on the difference of A and p and x = QA-" then 

W(A,  ~ ) = ( 9 - 9 - ' ) ~  (33) 

and we get 

which satisfies (2) through (4). 

solution of (7) 
Taking f +=9  and noting that (20) gives rise to f-= -9-' we get the type (ii)  

where X and Y have are given by (28) 
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When (33) holds and 5, = pk = 0 one gets 

1 

L 
This is the exotic solution of the braid relation plus an external field and equation (4). 

When a x ( - )  = pk(+) = 0 and ax(+)  = - & - )  we obtain (6) with 
tn = q ~ X r - , m k ( + M '  ,r = q Q ' : l , u , c - l r *  1 ) = 1  (37) 
W ( A , & ) =  t ; ' f ; ' ( t i - l ) .  (38) 

Therefore Murakami's solution [I31 is a particular case of the general form of 
solutions (35). 

We see that there exist two types of coloured solutions shown by (27) and (35) .  
'I  hrough this simpie exampie we conciude that if we use the extended version of 

type (4) to  generate (A ,  y)-dependent solutions of the Y H E  then it can be non-additive. 
After this doing if we regard the spectral parameters ( A ,  p )  with non-additivity for Y H E  

as the colours then one can 'secondly' Yang-Baxterize the coloured solutions to 
obey (2). 

It is surprising that in such a simple example there appears the 'non-additive' 
>UI"LIUIIS U, LllC Itlh. 51,150 W O  Kl lUW Lllal uJ,llpl,calr" c*lc"la,iuIIs W C l C  Illaur; IUI 

deriving the non-additivity of spectral parameters for the YBE in, for example, [14-161. 
This may be because we are looking for simpler solutions with non-additive type of 
spectral parameters operated by direct calculation through (8). 

We would like to  point out that in general the derived general solutions do not 
satisfy the usual unitarity conditions for any A and p even though some of the particular 
cases do. This is because the general solutions are beyond the scope at (4). This problem 
and more complicated examples will be discussed in a following paper. 

Finally we emphasize that either the standard solution (27) or the exotic solution 
(35) can be derived fom the quantum double of Drinfeld construction where X ( A )  
and Y(p) come from the allowed Cartan centralizer. 

We thank Professor M Jimbo for pointing out the observations in  our final paragraph. 
I nis work is partiy supported by Tie iu'aiionai Science Foundation or Lnina. 
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